PIPING RENEWABLE ENERGY: UTILIZING METHANOGEN AND ORGANIC WASTE

ROBERT BAUER¹, MAXIMILIAN MOCK², TIM BIERINGER² ¹DEGGENDORF INSTITUTE OF TECHNOLOGY ²UNIVERSITY OF APPLIED SCIENCES LANDSHUT

MOTIVATION

- Storage of surplus renewable energies as chemical energy in form of methane for heating and fuel purposes and distribution via gas grid with a high storage capacity in Germany (514 TWh_{th})
- Reduction of fossil fuels usage and decarbonisation of the gas grid in terms of using renewable resources
- Enzymatic catalysed process on average 10⁵-10⁷ faster compared to

BIOLOGICAL METHANATION

chemical reaction

- Reaction conditions at 60 °C and about 3 bar
- No catalyst poisoning by syngas pollutants (like H₂S, NH₃ or tar)
- Metabolism of CO already successfully proofed in a preliminary study

THERMO-CHEMICAL CONVERSION

- Conversion of wet biomass to biochar via a combined drying and carbonisation process
- Subsequent gasification at 1400 °C with oxygen
- Steam reformation with steam from the carbonisation process in order to maximise hydrogen content

INNOVATIVE ASPECTS

Use as energy control storage device
(aloctrolysis on domand) combined with

Organic residual and	DC bus bar	(
waste materials		

(electrolysis on demand) combined with thermochemical hydrogen generation for constant hydrogen feed

- Conversion of biomass (e.g. sewage sludge) to natural gas
- Conversion of CO via methanogenic metabolism
- Maximum efficiency by coupling methanation with thermochemical syngas

OUTLOOK

- Reduction of electric load grid on demand
- Decentralised thermochemical conversion and transportation of biochar to central gasification/methanation hubs with higher efficiency

 Sustainable energy supply for transportation, heating and electricity based on a renewable biogenic source Figure 1: Concept of a novel hybrid energy storage system

Contact

Robert Bauer, M. Eng. Technology Center for Energy Wiesenweg 1 94099 Ruhstorf a.d. Rott Tel.: +49 (0)8531 – 914044 45 Email: robert.bauer@th-deg.de

