Telematics International Mission - TIM

Alexander Kleinschrodt¹, Iurii Motroniuk², Anna Aumann², Ilham Mammadov², Maros Hladky¹, Mohd Bilal¹, Andreas Freimann¹, Liu Minshi³, Jiang Lianxiang³, Francois Malan⁴, Hendrik Burger⁵, Giovanni Beltrame⁶ and Klaus Schilling^{1,2}

¹University of Würzburg, Lehrstuhl für Informatik VII (Robotik und Telematik), Würzburg, Germany; ²Zentrum für Telematik e. V., Würzburg, Germany; ³Shandong Institute of Space Electronic Technology, Shandong, China; ⁴Space Advisory Company, Somerset West, Cape Town, South Africa; ⁵SCS Space, Somerset West, Cape Town, South Africa, and ⁶Polytechnique Montreal, Montreal, Canada

Objectives

Visual Servoing

Formation Control

Figure 1: TIM formation & tasks

- Create formation of cooperating nanosatellites for joint Earth observation.
- Establish large formation to provide increased coverage and shorter revisit times for monitoring dynamic events.
- Present solutions to cutting edge problems: 1) monitoring of height of ash clouds, 2) identification of sea vessels, 3) monitoring of thermal anomalies.
- Unify infrastructure from all partners for one joint mission.
- ► Modular design based on UNISEC.

Figure 2: UNISEC reference implementation

Figure 6: Example for a feature matching

- Satellites analyze area, process input, share data and provide input for attitude control to keep max. overlap of imaged areas.
- ► The method consists of three steps: (1) feature extraction, (2) description and (3) distributed matching.

Figure 7: Formation control for desired formation configuration

- Natural dynamics utilized for formation design.
- Projected circular orbit and in-track formation for Earth Observation.
- ► Traditional linear models for relative motion not sufficient here. Nonlinear control techniques need to be employed.

Satellite Design

trol

Coordinated Attitude Control

Maximize overlapping area of

Communication

- Space Segment \triangleright UHF : Telemetry and low speed data transfer, ISL communication.
 - ▷ S-Band : high speed downlink.
 - ▷ OSIRIS : Experimental optical downlink.
- Ground Station Network

Figure 8: TIM communication concept

▷ Provides interface for heterogeneous software and hardware systems. ▷ Scheduling algorithms of available stations across the network.

Testing facilities

images to ca. 80%.

► Stereo angle of ca. 10deg for photogrammetric measurements. ► Inter-satellite distances of ca. 100km.

Required pointing accuracy of ca. 1deg achieved by newly developed miniature reaction wheels (Wittenstein/ZfT Development: 20x20x20mm, 20g; 2 mNms Momentum Storage, 0.1 mNm max. torque).

Figure 4: Concept of Coordinated Attitude Con-

Figure 5: Reaction Wheels

Figure 9: Turntables at ZfT

Simulation of Dynamic Observation. ► Geometries for Camera Testing. Sensor calibration.

Acknowledgments

The authors thank all the collaborators for their contributions within the Telematics Earth Observation Mission – TOM, supported by the Bavarian Ministry of Economics and the RLS for the cooperation in TIM.

https://www.rls-sciences.org