

Research on Power-to-X-Concepts

RLS Energy Network, Québec 17.05.2017

Dr. Robert Tichler Energieinstitut an der JKU Linz

Long-run vision of power-to-x: green gases / green hydrocarbons are an important cornerstone of the future energy system

- Systemic reasons for the necessity of power-to-x
 (Macroeconomic / socioeconomic / technoeconomic contribution of power-to-x systems for economy, society and ecology)
- Research items of Energieinstitut an der JKU Linz
- Examples of (Upper-)Austrian R&D on power-to-gas
- Upper Austria as possible role model for power-to-x systems

Source: www.storeandgo.info

power-to-x-systems

power-to-liquids / power-to-chemistry

Quelle: Energieinstitut an der JKU Linz

R&D of Energieinstitut an der JKU Linz within power-to-x

- Multi- and transdisciplinary team working on power-to-gas since 2007
- Three departments involved: Energy Economics, Energy Law, Energy Technologies
- Approx. 30 finished and currently running projects in this context; 15 in concrete planning
- Author of official Austrian R&D roadmap for Power-to-Gas
- Coordinator of Austrian PtG-platform and Austrian hydrogen initiative

Methodology

- Systemic research (macro)economic analysis
- Regulatory approaches; Legal analysis
- Technoeconomic analysis learning curves, benchmarking
- Behavioral Economics social and public acceptance and willingness to pay
- Roadmapping, project management

power-to-x paradox

- The importance of power-to-x systems for the future energy system suffers from one dominant fact – the broad spectrum of positive effects.
- This generates a complexity pitfall it takes more time and capacity for explaining / teaching / developing than for other - singular applicable – technologies.
- This can be described even with the (own) historic development of systemic research on power-to-gas.

Middle-European development:

Discussion about power-to-X in the years 2008-2015 was driven by the ability of positive system service functions of (esp.) power-to-gas for the electricity market – long run storage of volatile green electricity production (of huge amounts)

Main applications of power-to-gas / power-to-x-systems for the central European energy markets (the specific order is desired) [part 1]

- Power-to-gas enables the transition of the energy system to a complete green system by a significant usage of existing (transmission, distribution, storage) gasinfrastructure
- 2. The transition of **specific industrial processes** is only possible via green hydrogen (e.g. steel production see therefore Upper Austrian project H2future www.h2future-project.eu)
- 3. Difficult sectors for decarbonisation like mobility and industry gain new green energy paths/products a diversification is accomplished / alternative to a full electrification

Source: www.storeandgo.info

Main benefits of power-to-gas / power-to-x-systems for the central European energy markets (the specific order is desired) [part 2]

- **4. Sector coupling**: capacity management and **long run storage** of volatile produced green electricity
- 5. Substitution of energy transport via electricity grid to **transportation via gas grids** avoidance of socioeconomic challenges (e.g. NIMBY)
- 6. Carbon Capture and Utilization important step to carbon cycle economy
- 7. Generation of **full autarkic energy systems**, also for back-up options

"greening of the molecules"

Source: www.underground-sun-conversion.at

Benefits of a green-hydrogen-based energy system

Source: Energieinstitut an der JKU Linz

Selection of power-to-x concepts and projects

(Energieinstitut involved)

- Austrian energy model region hydrogen and power-to-gas (funded by the Austrian "Klima- und Energiefonds")
- Austria is perfectly suited to realize the energy model region WIVA P&G, which illustrates the conversion of the energy system to green hydrogen
- 9 concrete and proposed projects; 11 additional projects in concrete planning
- 6 of 13 major partners are from Upper Austria
 - Energieinstitut
 - Fronius International
 - RAG Austria
 - Energie AG OÖ
 - Voestalpine Stahl
 - K1 MET

- Sectorally integrated projects using green electricity will boost the transition to sustainable energy system.
- WIVA P&G subsumes the experiences of more than 30 completed and ongoing projects and is going to implement 25 sub-projects within the energy model region.
- The founded research association WIVA P&G coordinates and implements the model region with the structure of an Austria-wide and therefore transregional, thematically focused and internationally visible cluster project.
- It has a multidisciplinary innovation structure, demonstrates and tests intelligent system solutions in practice, and provides applicable systems for users.
- There is no geographical restriction within Austria, so that WIVA P&G has a significant international visibility with its outstanding research projects.

STORE&G

HORIZON 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691797.

- "Innovative large-scale energy STOragE technologies AND Power-to-Gas concepts after Optimisation" [funded by Horizon2020]
- Focus of R&D: further development and demonstration of 3 specific methanation technologies
- 28 project partners (lead: DVGW-EBI-KIT)
- Content (selection):
 - chemical-catalytic methanation
 - biologic methanation
 - Direct CO₂-air-Capture
 - PEM/AEC electrolyzers
 - Production of green SNG and green LNG
 - Power-to-gas roadmap
- https://www.storeandgo.info/

Source: www.storeandgo.info

STORE&G

Learning curves: Development of specific investment costs for **electrolysers** according to different power-to-gas-potentials on a European and global level (calculation was performed with the **tool Collect by Energieinstitut**)

- "Renewable Energy Storage and Conversion by in- situ biological Methanation in porous Underground Gas Reservoirs" – Underground Sun.Conversion
- For the first time this project will enable production of natural gas directly within a
 gas reservoir using a microbiological process initiated specifically for this purpose,
 and to store it in the same reservoir.
- This innovative method is unique worldwide, and recreates the natural process by which gas originates, but shortens it by millions of years
- www.underground-sun-conversion.at/

Projektpartner:

hydrogen from solar or wind energy gets injected into an existing gas (pore) reservoir, together with carbon dioxide – creating a sustainable carbon cycle.

Source: RAG Austria

<u>Proposal</u>: Flexible, efficient reversible SOC plants for waste-stream usage, providing balancing power and power-to-x-production – X-FACTORy

- Common project proposal for Horizon2020 of Energieinstitut an der JKU Linz an Friedrich-Alexander Universität Erlangen-Nürnberg (and 5 other partners)
- Elaboration of concepts of power balancing plants based on the thermal integration of various gasification processes for low-grade waste streams in combination with reversible solid oxide cells (rSOC) [fuel cell and electrolyser]
- By using low-grade waste materials as long-term available energy source together with storage options based on yet existing infrastructure, the economic viability is increased at early stage – "systemic feasibility study"

RLS-network output – energy R&D collaboration of Upper Austria and Bavaria

Proposal: X-FACTORy (II)

The overall objective is to pave the way for the large scale deployment of rSOC based balancing power plants by removing knowledge gaps and technical and non-technical barriers

Upper Austria as role model for power-to-x systems

Upper Austria ...

- ... accommodates innovative power-to-x projects
- ... possesses an optimal gas infrastructure
- ... provides significant CO₂ sources both green and grey
- ... offers innovative industry and technology providers
- ... is a key energy crosspoint and therefore predestinated for sector coupling
- ... wants to connect and therefore strengthen R&D activities e.g. in power-to-x with other regions (in a bidirectional way)

- Many thanks for listing!
- We are looking forward to cooperation / common R&D.
- We are thankful for your questions / hints / discussions.

Dr. Robert Tichler

Energieinstitut an der Johannes Kepler Universität Linz

Altenberger Strasse 69 4040 Linz, AUSTRIA

Tel: +43 723 2468 5656 Fax: + 43 723 2468 5651

e-mail: tichler@energieinstitut-linz.at