

Game-Aware Data Dissemination

Bettina Kemme School of Computer Science

> Cesar Cañas, Jörg Kienzle, Kaiwen Zhang, and Arno Jacobsen

McGill University

Multiplayer Online Games (MOG)

- From a few players up to thousands
 - Big business
 - Demanding
 -
- Players receive each other's state changes
- But not of all only the ones they are interested in!

They need pub/sub!

Publish/Subscribe Paradigm

- Decouples content producers (publishers) from content consumers (subscribers)
- Subscribers only receive publications they are interested in
- Many flavors of publish/subscribe

Most common: topic-based pub/sub

- Subscription language: a topic T
- Publications tagged with a topic T, sent to all subscribers of T
- Matching process: very simple (hash table lookup)

Content-based pub/sub

- Subscriptions are queries over publication content
- Content has "data model"
- Attribute based

```
P((stock, IBM), (price, 50))
P((stock, Oracle), (price, 100))
S(price <= 60)
```


Multiplayer Online Games (MOG)

- From a few players up to thousands
 - Big business
 - Demanding
 -
- Players receive each other's state changes
- But not of all only the ones they are interested in!

They need pub/sub!

Interest and Replica Management

Area of Interest (AoI)

- Interest Management
- Replica Management
 - Ignore for this talk
 - **Update Propagation**

Version 1: Tiles and Topics

- game map divided into tiles
- player interested in all objects located in the tiles under its area of interest
 - Obstacle-Aware
- each tile a topic
- subscribe to tiles in Aol
- action: publish on current tile

Challenge Player Movement

- Many unsubscriptions
- Many subscriptions

Idea: graph representation

- Application domain representation
 - From set of topics to a graph
 - Each node is triangle
 - Neighboring triangles are connected

- Interest = Subscription:
 - Interested in all actions up to 3 nodes away
 - = Graph Query
- Action = Publication:
 - On a node

Graph-based pub/sub

• The application domain is represented as a graph or multiple graphs that are stored as meta-information in our system.

Graph G1

Subscriptions:

- Expressed as graph-query
- Returns a sub-graph

Subscribe (G1, hopDistance (N1, 2));

O Publications:

o On a node / edge

Publish (G1, N4, msg);

11

Street Maps

Public Transportation graphs

- Subscriptions:
 - The 3 stops before my stop
 - Max Distance of 6 minutes from my stop
- Publications: Whenever a bus arrives at a bus stop

Knowledge Graphs

• Publication:

- Info about a certain team
- Published on a node

Subscriptions:

- all teams my team is related to
- Graph query

Graps Implementation

- Publish
- Subscribe
- unsubscribe
- Store/delete Graph
- Update Graph

- Pub/sub engine
- Graph DBS backend

Graph Query

- Common Query API:
 - maxHops(nid, hops) → Game Example
 - maxDistance(nid, distance) → Bus Example
 - shortestPaths(nid1, nid2) → Street Map example
 - neighbors(nid, label) → Knowledge Graph example

Updating the Graph

Subscribe(G1, maxDistance (N1, 3))

RemoveEdge(G1, E2)

 Subscriptions automatically updated when graph changes

Version 2: area-based pub/sub

- 1 Blue: Subscribe (11 < x < 36, 1 < y < 21)
- 2 Pink: Publish (x=32, y=8, "action info")
- 3 Blue: Unsubscribe (11 < x < 36, 1 < y < 21) Subscribe(21 < x < 48, 12 < y < 32)

Moving Range Subscriptions

- Dead-reckoning techniques
 - Automatically determine subscription range changes.
- Broker can "evolve" subscription on behalf of client
- Avoid un- and resubscription
- No action needed from client

Moving Range Subscription

Assume: move on average one step per second

Regular Subscription

s:
$$\{(x>=-2),(x<2)\}$$

s:
$$\{(x>=-1),(x<3)\}$$

s:
$$\{(x>=0),(x<4)\}$$

Evolving Subscription

$$f_1(t) = -2 + t$$

 $f_2(t) = t + 2$

s:
$$\{(x >= f_1(t)), (x < f_2(t))\}$$

Application Driven System Development

- Game centric view
- Detect game application needs
- Find generic solution
- Make it work

THANK YOU

Demo

Applications

Interest and Replica Management

Area of Interest (AoI)

- Replica Management
- Update Propagation

ObjectStore and Replication Maintanance through Pub/Sub

System Example: Apache Kafka

Content-based pub/sub: semi-structured

XML based

- Publication are semi-structured documents
- Queries are Xqueries

```
P(<skater sid = "28">
        <sname> yuppy </sname>
        <rating> 9 </rating>
        </skater>)

Sub(//rating > 5)
```

Graph-based

- Publications are RDFs, etc
- Queries are Graph-queries

Subscription Language

Publications

- Single Node Publication
- Single Edge Publications
- Graph Query returning a sub-graph

Publish (G1, N4, "Hello World")

Subscriptions

Graph Query returning a sub-graph

Subscribe(G1, maxDistance (N1, 3))

Match

Sub-graph overlap

28

Tiles as Topics: Player Movement

- Unsubscribe from irrelevant tiles
- Subscribe to relevant tiles

Idea: graph representation

- Application domain representation
 - From set of topics to a graph
 - Each node is triangle
 - Neighboring triangles are connected

- Interest = Subscription:
 - Interested in all actions up to 3 nodes away
 - = Graph Query
- Action = Publication:
 - On a node

Subscription Count

Interest and Replica Management

Area of Interest (AoI)

- Interest Management
- Update Propagation

Version 1: Tiles and Topics [MW2014]

Single-Broker Implementation

Tables maintained within Padres

Subscription Table

<u>subid</u>	Nodes	Edges	Client
Sub_1	[N1,N2]	E4	C1
Sub_2	[N2]	-	C2

Node Table

Node ID	Linked Subscriptions
N1	[Sub_1]
N2	[Sub_1, Sub_2]

Edge Table

Node ID	Linked Subscriptions
E4	[Sub_1]

Multi-Broker Systems

Broker 1

Subscription	Node	Client
Sub_1	N1	Subscriber 1
Sub_2	N1	Subscriber 2

Node	Link
N1	[Sub_1, Sub_2]

Broker 2

Subscription	Node	Client

Node	Link
N1	[Broker_1]

GraPS Summary

- Data Management AND pub/sub
- Traditional:
 - Publication Content/Meta-Information determines match
- Graps:
 - Match through graph
 - Graph is Intermediary
 - Graph represents application domain

Challenges

- System aspects: scalability, reliability, ...
- Data Management:
 - Query execution, graph updates
- User Friendly

Bus Client

Implementation

Three different strategies/designs for Evolving Subscriptions:

- 1. Versioned Evolving Subscription (VES)
- 2. <u>Lazy Evaluation Evolving Subscription (LEES)</u>
- 3. Cached Lazy Evaluation Evolving Subscription (CLEES)

My one performance slide

 Evolving Subscriptions greatly reduce the total amount of subscriptions and unsubscription messages.

Performance Comparison

Approach	Sub/update rate	False Positive /Negative	Processing Time
Versioned	++	+-	+- to -
Lazy	++	++	+- to
Cached	++	+	+-
Parametric	+	+-	+
Original		-	+

Going a step further

- 1. Graph-based pub/sub
 - Modeling the application within the pub/sub system

- 2. Evolving subscriptions
 - Extending the capacity of pub/sub for different application needs

3. CacheDOCS

Mixing caching with pub/sub

Generalization to Evolving Subscriptions

Typical Pub/sub predicates

Predicates with Functions over Evolution Variables

- Evolution Variables
 - Time t (continuous)
 - Sensor Values
 - Temperature, Visibility,
 - Application Dependent
 - Stock Prices, Number of Clients, Tweets
 - Server based
 - Load, Connections
- Server must know value of variables
 - Time is easy
 - Provided by client/application on regular basis
 - Pulled by server from other service

- When possible?
 - Whenever the subscription change can be expressed as a function over evolving variables
 - Whenever the pub/server has efficient access to the variable values

Other examples: Visibility

Evolving Subscription: visibility

$$f_1(t) = -4 * v$$
 $f_2(t) = 4 * v$

s: {(x>= $f_1(t)$),
 (x< $f_2(t)$)}

Evolving Subscription: visibility + time

$$f_1(t,v) = (-4 + t) * v$$
 $f_2(t) = (t + 4) * v$

s: $\{(x>= f_1(t)), (x< f_2(t))\}$