

Artificial Intelligence in medical imaging

Ismail Ben Ayed

May 2018

Semantic segmentation

In medical imaging: Finding organs/abnormalities

Understanding diseases, predicting their progression, evaluating treatment outcomes, incidental findings, etc.

Semantic image segmentation:

Medical vs. Natural

Lot of annotated data (millions)

Lack of annotated data (few subjects)

Why medical image interpretation is difficult Annotations require expertise

Who knows where the horse is?

Who knows where the esophagus is?

Why medical image interpretation is difficult Annotations require expertise

Who knows where the horse is?

Who knows where the esophagus is?

Deep learning papers for medical image segmentation:

>40-50% at MICCAI 2017

Number of papers

[Litjens et al., MedIA 2017]

Constraints (anatomical knowledge, radiology reports)

Almost no annotated data

Anatomical priors (structured models)? Medical knowledge (weak annotations)? Suggestive annotations (active learning)?

Not enough annotated data: Guiding deep nets with priors

Aorta in MRI

[Dolz et al., MICCAI 2017]

esophagus in CT

> Aorta in CT

What about a lot of non-annotated data: with a little bit of annotations

Full annotations

Semi-supervised

What about a lot of non-annotated data: with a little bit of annotations

Full annotations

Semi-supervised

What about a lot of non-annotated data: with <u>weak</u> annotations, e.g. image tags

What about a lot of non-annotated data: with <u>weak</u> annotations, e.g. image tags

What about a lot of non-annotated data: with <u>weak</u> annotations, e.g. image tags

[Kervadec et al., MIDL 2018]

Heart cavity

No heart cavity

Training a machine with this Easily available info

Can we get this

Yes, we can...

Some exciting results: Left Ventricle in MRI

Method		DSC (Val)
	Cross-Entropy	0.0721
Weakly supervised	Proposals (one bound) ¹	0.6124
	Proposals (one bound) 2	0.0659
	Cross-Entropy + Size loss (one bound) 1	0.8107
	Cross-Entropy + Size loss (one bound) 2	0.8189
	Cross-Entropy + Size loss (two bounds)	0.8415
Fully supervised		0.9284

¹Loose bound / ²Tight bound

We achieve 90% of full supervision performance with 0.1% of annotated pixels.

Technical challenges: Is this all about optimization?

Complex constraints

- Dolz et al., CVPR'17
- Tang et al., ECCV'16 (oral)
- Ben Ayed et al., TPAMI'15
- Gorelick et al., CVPR'14 (oral), TPAMI'17
- Ben Ayed et al., CVPR'2013 (oral)

Very large variables: ~ Millions

The team achieved this recently...

MICCAI MRBrainS challenge

Dataset:

- 3 MRI Modalities

- Training: 5 subjects

- Testing: 15 subjects

49 International teams

The team achieved this recently...

Challenge rank

http://mrbrains13.isi.uu.nl/results.php

Rank	Team name	Submission name	Date	Sum Scores
1	LIVIA_ETS	HyperDenseNet ²	06-02-18	54
2	TailHot	Hybrid Segmentation Network ²	11-04-18	61
3	CU_DL2	3D Deep Learning; voxnet2	28-06-16	62
4	CU_DL	3D Deep Learning; voxnet13	16-06-16	64
5	LRDE	Fully Convolutional Network	20-12-16	68
6	MSL-SKKU	Deep Convolutional Neural Network	19-06-17	69
7	MDGRU	Multi-Dimensional Gated Recurrent Units ³	27-07-16	91
8	FBI/LMB Freiburg	U-Net (3D)	01-05-16	94
9	PyraMiD-LSTM2	NOCC with rounds ³	23-05-16	95
10	AOC	Atlas of Classifiers	24-12-17	106
11	IDSIA	PyraMiD-LSTM	05-06-15	114
12	STH	Hybrid ANN-based Auto-context method ²	03-06-16	124
13	ISI-Neonatology	Multi-stage voxel classification	31-05-14	129
14	UNC-IDEA	LINKS:Learning-based multi-source integration	09-02-15	135
15	MNAB2	Random Forests	21-02-14	157
16	KSOM GHMF	ASeTs: MAP-Based with Manifold learning	13-05-14	159
17	vicorob UdG T1_F	MSSEG using T1 + FLAIR (T1-IR skull)	14-01-16	180
18	VBM12	VBM12_r738 with WMHC=2	07-10-15	182
19	BIGR2	Multi-Feature SVM Classification	26-09-13	184
20	WTA	3D Cascade convolutional architecture	06-02-18	191

Acknowledgments

Acknowledgments

J. Dolz Post-doc

C. Desrosiers
Professor

H. Lombaert Professor

E. Granger Professor

K. Gopinath PhD Student

H. Kervadec PhD Student

Y. Boykov Professor

M. Tang PhD Student

J. Yuan Professor